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Artificial intelligence (AI) in mammography screening has shown promise 
in retrospective evaluations, but few prospective studies exist. PRAIM is 
an observational, multicenter, real-world, noninferiority, implementation 
study comparing the performance of AI-supported double reading to 
standard double reading (without AI) among women (50–69 years old) 
undergoing organized mammography screening at 12 sites in Germany. 
Radiologists in this study voluntarily chose whether to use the AI 
system. From July 2021 to February 2023, a total of 463,094 women were 
screened (260,739 with AI support) by 119 radiologists. Radiologists in the 
AI-supported screening group achieved a breast cancer detection rate of 
6.7 per 1,000, which was 17.6% (95% confidence interval: +5.7%, +30.8%) 
higher than and statistically superior to the rate (5.7 per 1,000) achieved in 
the control group. The recall rate in the AI group was 37.4 per 1,000, which 
was lower than and noninferior to that (38.3 per 1,000) in the control group 
(percentage difference: −2.5% (−6.5%, +1.7%)). The positive predictive value 
(PPV) of recall was 17.9% in the AI group compared to 14.9% in the control 
group. The PPV of biopsy was 64.5% in the AI group versus 59.2% in the 
control group. Compared to standard double reading, AI-supported double 
reading was associated with a higher breast cancer detection rate without 
negatively affecting the recall rate, strongly indicating that AI can improve 
mammography screening metrics.

Mammography screening programs contribute to reducing mortal-
ity associated with breast cancer1,2. However, there is still room for 
improvement in breast cancer screening. On the one hand, the sensi-
tivity of screening could be improved to lead to lower interval cancer 
rates and more effective treatment of patients with breast cancer. On 
the other hand, the specificity of screening could be increased to reduce 
the recall rate by minimizing false-positive results, which can cause 
anxiety and uncertainty among the screened women. Thus, a higher 

specificity would lessen the burden on the screening participants and 
the healthcare system by minimizing unnecessary, invasive and costly 
medical procedures.

Furthermore, the programs generate substantial volumes of mam-
mograms, which, in many programs (including the German mammog-
raphy screening program), require interpretation by two independent 
radiologists; a consensus conference or arbitration may also be neces-
sary to achieve high sensitivity and specificity3,4. Thus, the radiologists’ 
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the AI-supported viewer. All examinations for which neither radiologist 
submitted the report using the AI-supported viewer formed the control 
group. The study group assignment was unknown to the women and 
radiographers as it was not yet assigned at the time of image acquisi-
tion. After image acquisition, AI predictions were computed for all 
women but were displayed only to radiologists using the AI-supported 
viewer. The radiologists performing the first and second reads were 
free to use either their existing reporting and viewer software with-
out AI support or the AI-supported viewer. The decision to use the 
AI-supported viewer was made on a per-examination basis (that is, one 
radiologist typically delivered examinations for both the AI and control 
groups). Radiologists in a reader set independently chose whether to 
use the AI-supported viewer. The AI results were not disclosed to the 
other radiologist if they did not also choose to use the AI viewer.

The AI system used was Vara MG (from the German company 
Vara), a CE-certified medical device designed to display mammograms 
(viewer software) and preclassify screening examinations to assist 
radiologists in their reporting routine. The performance of previous 
versions of the AI software has been previously reported12,18. When 
using the AI-supported viewer, radiologists were supported by two 
AI-based features (Extended Data Fig. 1):

 1. Normal triaging. The software selects a subset of all examina-
tions deemed highly unsuspicious by the AI model. These ex-
aminations are tagged ‘normal’ in the worklist.

 2. Safety net. The software selects a subset of all examinations 
deemed highly suspicious by the AI model. Radiologists first 
read the screening examination without any further AI support. 
When the radiologists interpret an examination as unsuspi-
cious, the safety net is activated with an alert and a suggested 
localization of the suspicious region(s) in the images. The radi-
ologists are then prompted to review their decision and either 
accept or reject the safety net’s suggestion.

Characteristics of the study population
Overall, 461,818 women who attended mammography screening at the 
12 screening sites participated in the study. A total of 119 radiologists 
constituting 547 reader sets interpreted the examinations. Mammogra-
phy hardware systems from five different vendors were used (Extended 
Data Table 2). Of all the participating women, 260,739 were screened 
in the AI group (with the AI-supported viewer being used by only one 
reader for 152,970 women and by both readers for 107,769 women) 
and 201,079 were screened in the control group. Table 1 presents the 
characteristics of the screened women and the detected breast cancers 

work involves the repetitive task of interpreting hundreds of images per 
week, most of which have no signs of breast cancer. This approach heavily 
relies on human expertise, yet screening programs are experiencing a 
lack of radiologists5. With national and international guidelines recently 
recommending mammography screening also for the age groups 40/45–
49 and 70–74 years, the workload is expected to increase6–8.

Integrating artificial intelligence (AI) into breast cancer screening 
workflows could alleviate some of the problems that screening pro-
grams face. Retrospective studies have shown that AI has comparable 
and sometimes superior accuracy to radiologists, suggesting that the 
technology can support radiologists in interpreting mammograms by 
improving the identification of subtle abnormalities that might other-
wise elude human readers and by reducing the reading workload9–11. 
Growing evidence indicates that AI detects 20–40% of interval cancers 
that can retrospectively be seen or suspected on prior screening mam-
mograms but were missed by radiologists12–14. Using retrospective data 
in studies evaluating the impact of AI on screening metrics is limited by 
the uncertainty of outcomes in women whose mammography findings 
were flagged as suspicious by AI only and were, therefore, not referred 
for consensus conferences or further assessments. A growing body 
of prospective evidence demonstrates the potential of AI to improve 
screening metrics and additionally reduce reading workload. The MASAI 
(MAmmography Screening with AI) trial15, the ScreenTrustCAD study16 
and a study by Ng et al.17 all reported increased cancer detection for work-
flows incorporating AI, but the results on recall rates were inconsistent. 
However, these studies are limited by small sample sizes (which restrict 
the analysis of subgroups) and by the lack of heterogeneity in terms of 
screening sites, mammography equipment vendors and the radiologists 
involved, thereby reducing their generalizability to real-world settings.

In a retrospective analysis, Leibig et al.18 demonstrated that the use 
of AI in a decision referral approach, in which AI confidently predicts 
normal or highly suspicious examination results and refers uncer-
tain results to the radiologists’ expertise, yielded superior metrics 
than AI or radiologists alone. In the PRAIM (PRospective multicenter 
observational study of an integrated AI system with live Monitoring) 
implementation study embedded in the German mammography 
screening program, we investigated whether the performance met-
rics achieved by double reading using an AI-supported CE (Conformité 
Européenne)-certified medical device with a decision referral approach 
were noninferior to those achieved by double reading without AI sup-
port in a real-world setting. Here, we report the impact of AI on cancer 
detection and recall rates.

Results
The study was conducted within Germany’s organized breast cancer 
screening program targeting asymptomatic women aged 50–69 years 
(Fig. 1). All women participating in the screening program were eligible 
for study inclusion. Between July 1, 2021, and February 23, 2023, data 
from screening participants were collected from 12 screening sites 
that used the AI system (Extended Data Table 1). In the German mam-
mography screening program, which is based on a binding national 
guideline, four two-dimensional mammograms (craniocaudal and 
mediolateral oblique views of each breast) are taken for each participat-
ing woman. These mammograms are initially read independently by 
two radiologists (sometimes, a third radiologist supervises). If at least 
one radiologist deems the case suspicious, a consensus conference is 
held. The participants of the consensus conference are at least the two 
initial readers and one head radiologist, but more radiologists of the  
screening site can participate. If the suspicious finding persists in the 
consensus conference, the woman is recalled for further diagnostic 
assessments, which can include, among others, ultrasonography, 
digital breast tomosynthesis, magnification views, contrast-enhanced 
mammography or magnetic resonance imaging.

For the study, examinations were assigned to the AI group when 
at least one of the two radiologists read and submitted the report with 

463,094 women screened from
July 1, 2021, to February 23, 2023

461,818 screened women
in final analysis

260,739 women screened with AI-
supported double reading

(AI group)

201,079 women screened with
standard double reading

(control group)

Excluded:
    214
    610
    451
        1

technical issues
process canceled by participant
process unfinished
safety net was shown but 
the examination was eventually 
reported in the control group

Fig. 1 | Study profile. The flowchart shows the inclusion of study participants and 
their assignment into groups.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03408-6

Table 1 | Characteristics of the study population overall and by study group

Characteristics AI group (n = 260,739) Control group (n = 201,079) Overall (n = 461,818)

Age (years)

 Median (IQR) 58 (54–63) 58 (54–63) 58 (54–63)

 Missing, n (%) 2 (<0.1%) 0 (0%) 2 (<0.1%)

 50–59 years, n (%) 114,365 (43.9%) 87,781 (43.7%) 202,146 (43.8%)

Breast density, n (%)

 Nondense 165,332 (63.4%) 137,889 (68.6%) 303,221 (65.7%)

 Dense 94,955 (36.4%) 63,125 (31.4%) 158,080 (34.2%)

 Missing 452 (0.2%) 65 (<0.1%) 517 (0.1%)

Screening round, n (%)

 First 43,449 (16.7%) 35,680 (17.7%) 79,129 (17.1%)

 Follow-up 217,290 (83.3%) 165,399 (82.3%) 382,689 (82.9%)

Screening sites

 Number of sites 11 12 12

 Screened women per unit, median (IQR) 18,503 (15,703–29,466) 13,341 (4,860–21,980) 40,101 (27,060–47,858)

Radiologists

 Number 110 117 119

 Number of reader sets 387 485 547

 Screened women per reader set, mean (s.d.) 477 (1,069) 368 (637) 844 (1,326)

 Minimum/maximum 0/8,664 0/5,940 1/8,939

Consensus conference

 Consensus conferences, n (%) 32,341 (12.4%) 21,996 (10.9%) 54,337 (11.8%)

Recall

 Recalls, n (per 1,000) 11,603 (44.5) 7,727 (38.4) 19,330 (41.9)

 PPV of recall (%) 14.5 15.6 14.9

Preoperative biopsy

 Biopsy recommended, n (per 1,000) 2,843 (10.9) 1,981 (9.9) 4,824 (10.4)

 PPV of biopsy (%) 59.0 60.5 59.6

Detected breast cancers

 Breast cancers, n (per 1,000) 1,679 (6.4) 1,202 (6.0) 2,881 (6.2)

 Invasiveness, n (% of cancer detected)

 DCIS 341 (20.3%) 203 (16.9%) 544 (18.9%)

 Invasive 1,308 (77.9%) 981 (81.6%) 2,289 (79.4%)

 Other 30 (1.8%) 18 (1.5%) 48 (1.7%)

 Breast cancer stage (UICC), n (% of cancer detected)

 0 341 (20.3%) 203 (16.9%) 544 (18.9%)

 1 881 (52.5%) 588 (48.9%) 1,469 (51.0%)

 2 327 (19.5%) 281 (23.4%) 608 (21.1%)

 3 30 (1.8%) 24 (2.0%) 54 (1.9%)

 4 2 (0.1%) 0 (0.0%) 2 (0.1%)

 X 53 (3.2%) 34 (2.8%) 87 (3.0%)

 Missing 45 (2.7%) 72 (6.0%) 117 (4.1%)

 Invasive cancer grade, n (% of invasive cancer)

 G1 288 (22.0%) 230 (23.4%) 518 (22.6%)

 G2 771 (58.9%) 551 (56.2%) 1,322 (57.7%)

 G3 135 (10.3%) 155 (15.8%) 290 (12.7%)

 X 48 (3.7%) 27 (2.8%) 75 (3.3%)

 Missing 66 (5.1%) 18 (1.8%) 84 (3.7%)
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by study group. Of the screened women, 41.9 per 1,000 had suspicious 
findings and were recalled for further assessment. A quarter of them 
(10.4 per 1,000) underwent biopsy procedures, and 6.2 per 1,000 were 
finally diagnosed with breast cancer. Most (79.4%) of the cancers were 
classified as invasive, and 18.9% were ductal carcinoma in situ (DCIS).

AI normal triaging, safety net trigger and acceptance rates
AI tagged 56.7% (262,055 of 461,818) of the examinations as normal. 
This proportion was higher in the AI group (59.4%) than in the control 
group (53.3%; Table 2) due to an observed reading behavior bias. In 
the AI group (n = 260,739), the safety net was triggered for 3,959 (1.5%) 
examinations, shown in 2,233 (0.9%) examinations and accepted in 
1,077 (0.4%) examinations, leading to 541 (0.2%) recalls and 204 (0.08%) 
breast cancer diagnoses. Conversely, 8,032 (3.1%) examinations in the 
AI group underwent further evaluation by the consensus group despite 
being tagged as normal by AI, resulting in 1,905 (0.7%) recalls, 82 (0.03%) 
biopsies and 20 (0.008%) subsequent breast cancer diagnoses.

Recall, cancer detection rate and positive predictive values
We controlled for the identified confounders (reader set and AI pre-
diction; causal graph presented in Extended Data Fig. 2) through 
overlap weighting based on propensity scores (Extended Data 
Fig. 3). The model-based breast cancer detection rate (BCDR) per 
1,000 women screened was 6.70 for the AI group and 5.70 for the 
control group. This represents a model-based absolute difference 
of one additional cancer per 1,000 screened women and a relative 
increase of 17.6% (95% confidence interval (CI): +5.7%, +30.8%). The 
BCDR in the AI group was considered noninferior and even statisti-
cally superior to that in the control group. The AI group had a lower 
model-based recall rate (37.4 per 1,000) than the control group (38.3 
per 1,000), showing a −2.5% reduction (−6.5%, +1.7%) (Table 3). The 
positive predictive value (PPV) of recall was 17.9% in the AI group 
and 14.9% in the control group. The biopsy rate in the AI group was 
8.2% higher (−0.4%, +17.6%) than in the control group. Despite this, 
the AI group demonstrated a statistically significantly higher PPV of 
biopsy (+9.0% (+2.0%, +16.4%)).

Subgroup analyses
Subgroup analyses showed that the BCDR increased in all subgroups 
by screening round, breast density and age, ranging between +12% and 
+23% (Table 4). The 95% CIs were completely positive for the subgroups 
of follow-up screening round, nondense breasts and age 60–69 years.

The relative differences in recall rates in the subgroups varied 
between −5% (age 50–59 years) and +4% (age 60–69 years), but all CIs 
except for women aged 50–59 years contained zero.

Sensitivity analyses
We conducted various sensitivity analyses, all of which showed that 
our analyses were robust to different analytical decisions.

In a model that, in addition to AI prediction and reader set, further 
adjusted for age, screening round, breast density and supervision in 
the propensity score model, the BCDR remained unchanged at 17.6% 

(5.7%, 30.8%). Similarly, in the additionally adjusted model, the PPV of 
recall and biopsy was 18.3% (−7.3%, 30.5%) and 9.3% (0.5%, 18.8%) higher, 
respectively, for the AI group than the control group (Extended Data 
Table 3). The results of the subgroup analyses by age group, screen-
ing round and breast density did not change meaningfully following 
additional adjustments.

Sensitivity analyses in which we adjusted for each reader individu-
ally instead of the reader set also provided data similar to the main 
results: in the AI group, the BCDR was 19.0% (7.4%, 31.8%) higher and 
the recall rate was −1.5% (−5.4%, 2.6%) lower, indicating that the results 
were robust to the different parameterization of the reader set variable.

The results were robust toward sampling error, as they remained 
nearly unchanged when the study sample was varied (bootstrapping 
and 80% random subset selection, each done 1,000 times): the mean 
BCDR was 17.6% (5.7%, 30.8%) for bootstrapping and 17.4% (11.4%, 23.8%) 
for the subset selection.

A propensity score-based alternative to overlap weighting is 
inverse propensity score weighting with trimming. After applying 
various trimming thresholds (Extended Data Table 4), the results 
remained similar.

Characteristics AI group (n = 260,739) Control group (n = 201,079) Overall (n = 461,818)

 Invasive cancer size, n (% of invasive cancer)

 ≤10 mm 475 (36.3%) 350 (35.7%) 825 (36.0%)

 10–20 mm 572 (43.7%) 418 (42.6%) 990 (43.3%)

 >20 mm 253 (19.4%) 210 (21.4%) 463 (20.2%)

 Missing 8 (0.6%) 3 (0.3%) 11 (0.5%)

‘Missing’ means that the corresponding data entry is empty in the official screening documentation. ‘X’ indicates that physicians tried to determine a value but failed to do so. ‘Other’ 
invasiveness means that it was unclear whether the cancer was DCIS or invasive and other malignant neoplasms. IQR, interquartile range; UICC, Union for International Cancer Control.

Table 2 | AI predictions and contributions to the radiologists’ 
decisions

Conditions AI group 
(n = 260,739)

Control group 
(n = 201,079)

Overall 
(n = 461,818)

AI prediction

 Normal 154,891 (59.4%) 107,164 (53.3%) 262,055 (56.7%)

 Not normal 105,848 (40.6%) 93,915 (46.7%) 199,763 (43.3%)

AI prediction normal and…a

  … consensus 
conference

8,032 (3.1%) 5,454 (2.7%) 13,486 (2.9%)

 … recall 1,905 (0.7%) 1,162 (0.6%) 3,067 (0.7%)

  … 
preoperative 
biopsy

82 (0.03%) 86 (0.04%) 168 (0.04%)

  … confirmed 
cancer

20 (0.008%) 25 (0.012%) 45 (0.010%)

Safety net

 Triggered 3,959 (1.5%) 3,140 (1.6%) 7,099 (1.5%)

 Shown 2,233 (0.9%) NA NA

 Accepted 1,077 (0.4%) NA NA

  Accepted and 
had a recall

541 (0.2%) NA NA

  Accepted and 
confirmed 
cancer

204 (0.1%) NA NA

NA, not applicable. aThe percentages relate the absolute numbers to the total number in the 
study group (or in the whole study sample for ‘overall’), not the subgroup of mammograms 
tagged ‘normal’.

Table 1 (continued) | Characteristics of the study population overall and by study group
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Another alternative to propensity score weighting as a method for 
confounder adjustment is stratification. Again, the results of sensitivity 
analyses including all confounder strata containing a certain minimum 
sample size (between 0 and 200) in each study group were in line with 
the main results.

We conducted a placebo intervention analysis to check whether 
the AI effect observed in the main analysis would vanish (as it should) 
when there is only a placebo intervention while all assumptions of the 
model are kept (that is, in the presence of residual confounding due to 
the reading behavior). As expected, the average model-based difference 
was minimal (0.8% (−9.9%, 11.6%)), indicating no residual confounding.

Reading times and workload reduction
The average reading time per screening examination was measured in 
the AI group only as it was technically not possible to measure this in the 
control group. On average, examinations tagged as normal were read 
more quickly (median reading time, 16 s) than unclassified examina-
tions (median reading time, 30 s) and safety net examinations (median 
reading time, 99 s). Overall, radiologists spent 43% less time interpret-
ing examinations tagged as normal, with a mean reading time of 39 s for 

normal examinations compared to 67 s for examinations not tagged 
as normal (Extended Data Fig. 4).

To evaluate the potential of AI integration to reduce reading work-
load through automation, we analyzed a fictitious scenario in which 
the screening examinations triaged as normal by AI were not read by 
radiologists. Rather, after an AI prediction of ‘normal’, the examination 
directly received the final classification ‘normal’, and thus, it would not 
be possible that any breast cancer signs missed by AI were detected by 
the radiologists, that a recall was made or that a cancer was detected. 
The analysis of this scenario showed that, when all normal-tagged 
examinations (56.7%) were automatically classified as normal, the 
BCDR was still higher and statistically superior by 16.7% (4.9%, 29.9%), 
the consensus rate was lower by −19.4% (−21.5%, −17.4%), the recall rate 
was statistically superior and lower by −15.0% (−18.6%, −11.2%), whereas 
the biopsy rate was higher by 5.8% (−2.7%, 15.0%) in the AI group than 
in the control group (Table 5).

Discussion
The PRAIM study was embedded within the German breast cancer 
screening program. To our knowledge, it is the largest study on the 

Table 3 | Model-predicted BCDRs, recall rates, biopsy rates and consensus rates and corresponding differences in the AI 
and control groups

Variables Model-based prediction Model-based difference (95% CI)

AI group Control group Absolute difference Percentage difference

BCDR (per 1,000 women screened) 6.7 5.7 1.0 (0.3, 1.7) 17.6% (5.7%, 30.8%)

 By invasiveness

 Invasive 5.2 4.8 0.4 (−0.2, 1.0) 7.8% (−4.3%, 21.3%)

 DCIS 1.4 0.8 0.6 (0.3, 0.8) 67.6% (29.6%, 116.8%)

 Other 0.1 0.04 0.1 (−0.0005, 0.1) 189.6% (−6.6%, 797.7%)

 By stage (UICC)

 0 1.4 0.8 0.6 (0.3, 0.8) 67.6% (29.6%, 116.8%)

 1 3.3 2.8 0.4 (−0.02, 0.9) 15.4% (−0.9%, 34.4%)

 2 1.4 1.5 −0.1 (−0.4, 0.2) −7.5% (−25.7%, 15.3%)

 3 0.1 0.1 −0.04 (−0.1, 0.04) −34.4% (−71.9%, 53.0%)

 4 0.02 ≪0.0
1

0.02 (−0.01, 0.04) NA

 Missing + X 0.5 0.4 0.2 (−0.03, 0.3) 37.8% (−6.4%, 102.9%)

 By grade (invasive cancers only)

 1 1.2 0.9 0.3 (0.01, 0.5) 30.0% (0.7%, 67.9%)

 2 3.1 2.8 0.3 (−0.2, 0.7) 9.8% (−6.0%, 28.2%)

 3 0.6 0.8 −0.2 (−0.5, −0.01) −28.7% (−48.4%, −1.4%)

 Missing + X 0.3 0.3 0.1 (−0.1, 0.2) 24.2% (−23.3%, 101.2%)

 By tumor size (invasive cancers only)

 ≤10 mm 1.8 1.6 −0.1 (−0.4, 0.2) 8.2% (−11.7%, 32.6%)

 10–20 mm 2.4 2.0 0.3 (−0.1, 0.7) 16.1% (−3.0%, 39.1%)

 >20 mm 1.1 1.2 −0.1 (−0.4, 0.2) −9.0% (−29.2%, 17.0%)

 Missing 0 0 0.02 (−0.004, 0.04) NA

Consensus rate (per 1,000 women screened) 112.7 111.1 1.6 (−1.0, 4.2) 1.4% (−0.9%, 3.9%)

Recall rate (per 1,000 women screened) 37.4 38.3 −1.0 (−2.6, 0.6) −2.5% (−6.5%, 1.7%)

PPV of recall 17.9% 14.9% 3.0 (1.5, 4.6) percentage 
points

20.5% (6.2%, 32.9%)

Biopsy rate (per 1,000 women screened) 10.4 9.6 0.8 (−0.0, 1.6) 8.2% (−0.4%, 17.6%)

PPV of biopsy 64.5% 59.2% 5.3 (1.3, 9.4) percentage 
points

9.0% (2.0%, 16.4%)

‘Missing’ means that the corresponding data entry is empty in the official screening documentation. ‘X’ indicates that physicians tried to determine a value but failed to do so. ‘Other’ 
invasiveness means that it was unclear whether the cancer was DCIS or invasive and other malignant neoplasms.
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effect of integrating AI into mammography screening on the BCDR and 
recall rate. This study extensively reports AI’s performance in clinically 
relevant subgroups by screening round, breast density, age, cancer 
invasiveness, stage, grade and size, with important implications for 
policy-making. PRAIM included more than 460,000 women, 119 radi-
ologists, 5 different machine vendors and 12 screening sites across 
Germany. The study did not exclude screening sites, machine vendors, 
radiologists (for example, based on years of professional experience) or 
subpopulations of women and allowed for updating the AI algorithms 
throughout the study, as would occur in a wider rollout. This real-world 
setting of PRAIM enhances the generalizability of the findings to similar 
double-reading mammography screening programs. The controlled 
implementation of AI into the screening process used in the PRAIM 
study—including onboarding of radiologists on the interpretation of AI 
recommendations before turning on AI predictions and live monitoring 
of the AI predictions by the vendor, compliant with postmarketing sur-
veillance regulations—facilitated a safe and responsible rollout of AI19.

Our AI approach for mammography screening provided confident 
normal and confident suspicious predictions (safety net) but no predic-
tions in which it was not confident. The BCDR in the AI group, in which 
one or both radiologists used the AI-supported viewer to interpret 
examinations, was 17.6% (5.7%, 30.8%) higher (one additional breast 
cancer per 1,000 screened women) than in the control group, in which 
independent standard (human) double reading was done. AI use was 
also accompanied by a slightly but not statistically significant lower 
recall rate (−2.5% (−6.5%, 1.7%)).

Our results are in line with earlier published studies. Retrospec-
tive studies found a similar or higher BCDR for AI-supported breast 
cancer screening, suggesting that AI could improve cancer detection 
by reducing the interval cancer rate and through earlier detection of 
next-round screen-detected cancers, some of which are retrospectively 
visible on mammograms from a preceding screening round12,14,20–22. 
Three prospective studies have also reported higher BCDRs with 
AI-supported screening15–17. The MASAI study, a randomized controlled 
trial, deployed AI to triage examinations for single or double reading 
in the intervention group and reported a 20% (−0%, 50%) higher BCDR 
but also increased recall rates from 2.0% (1.9%, 2.2%) to 2.2% (2.0%, 
2.3%)15. The ScreenTrustCAD study, which had a paired-reader design, 
showed that the reader replacement approach (AI plus one radiologist) 
achieved a higher BCDR (4% (0%, 9%)) and a lower recall rate (−4% (−6%, 
−3%)) than standard independent double reading16. Ng et al.17 used AI 
as a third reader to refer examinations for arbitration, which resulted 
in the detection of additional cancers, most of which were aggressive17.

The decision referral approach used in our study allowed for 
improving the BCDR without increasing the recall rate through a com-
bination of a ‘safety net’ system and ‘normal triaging’. Radiologists 
using the AI-supported viewer were only alerted and shown suspicious 

computer-assisted diagnosis marks after they interpreted examina-
tions deemed suspicious by the AI as normal. This approach limits 
automation bias and reduces false-positive recall rates while leaving the 
final recall decision to the radiologists (see example cases in Extended 
Data Fig. 5)18. In the AI-supported group, the safety net was triggered 
3,959 times and accepted 1,077 times, and 204 breast cancers (61 DCIS, 
142 invasive, 1 other) were diagnosed among these safety net-induced 
reassessments. These breast cancers would have been missed other-
wise. Labeling confident negative predictions may exploit automation 
bias and contribute to reducing the recall rate as radiologists may be 
less likely to falsely recall examinations tagged as normal by AI. How-
ever, radiologists in the AI group also detected 20 cancers among the 
examinations AI classified as normal.

Although our study and others have shown that the use of AI in 
breast cancer screening leads to higher BCDRs with comparable recall 
rates, there are still open questions. First, our study and others sug-
gest that integrating AI into mammography screening might further 
increase DCIS detection, raising concerns about potential overdiagno-
sis and subsequent overtreatment. This increase might partially result 
from the earlier detection of cancers that would otherwise be diag-
nosed as invasive interval or next-round cancers. It is unclear whether 
or to what extent the increased BCDR, including the higher detection of 
DCIS, of AI-supported screening will lead to a lower incidence of inter-
val cancers, better stage distribution of invasive disease and reduced 
incidence of next-round screen-detected cancers. Knowledge about the 
importance of higher detection of DCIS and grade 1 cancers on interval 
cancer rate and stage distribution is crucial but will only become clear 
after 2–3 years of follow-up. Among others, rejected safety net cases 
would be an interesting subgroup to help understand the ratio between 
overdiagnosis and interval or next-round cancers. In the present study, 
the DCIS detection rate was 0.8 per 1,000 women without AI and 1.4 per 
1,000 women with AI, whereas invasive disease was detected in 4.8 per 
1,000 women without AI compared to 5.2 per 1,000 women with AI. 
Once the true extent of overdiagnosis is established in future studies, 
the potential of AI to detect more DCIS cases that would otherwise not 
progress to invasive disease should be weighed against the benefit of 
increased detection of invasive tumors.

Second, it is unknown whether examinations for which the safety 
net was triggered but rejected by the radiologists represent a correct 
decision by the reader and thus a critical safety measure to reduce recall 
and overdiagnosis. Possibly, these cases were missed opportunities 
to detect even more cancers early and to improve overall program 
performance further. These questions will be investigated in the 2- to 
3-year follow-up analyses. Last, a setting should be defined (for exam-
ple, by guidelines) and evaluated in which human double reading can 
be replaced by AI-supported interpretation. This should include a 
risk–benefit assessment of AI use as well as legal implications.

Table 4 | Model-predicted BCDRs and recall rates and corresponding differences in the AI and control groups by screening 
round, breast density and age group

Variables Model-based BCDR (per 1,000 women screened) Model-based recall rate (per 1,000 women screened)

AI group Control group Percentage difference (95% CI) AI group Control group Percentage difference (95% CI)

Screening round

 First 9.3 7.8 19.0% (−4.6%, 48.5%) 94.9 96.5 −1.7% (−7.7%, 4.6%)

 Follow-up 6.2 5.2 17.9% (4.4%, 33.1%) 25.8 25.7 0.3% (−5.2%, 6.1%)

Breast density

 Nondense 6.3 5.4 16.6% (1.9%, 33.4%) 32.1 32.9 −2.7% (−7.9%, 2.9%)

 Dense 7.4 6.2 18.7% (−0.5%, 41.4%) 47.1 49.0 −3.9% (−9.9%, 2.5%)

Age group

 50–59 years 5.7 5.1 12.1% (−3.6%, 30.5%) 44.3 46.7 −5.0% (−9.8%, −0.2%)

 60–69 years 7.9 6.5 22.6% (5.5%, 42.4%) 28.5 27.4 4.1% (−3.6%, 11.9%)
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The integration of AI into screening workflows is expected to 
alleviate some of the labor shortages experienced by many screen-
ing programs. We compared the performance of one or both readers 
in a double-reading system using AI (deployed in a decision referral 
approach) to that of both readers not using AI. Therefore, we did not 
directly assess the extent of reading workload reduction that could be 
achieved by integrating AI. However, we observed that radiologists in 
the AI group spent less time interpreting examinations tagged as nor-
mal by AI compared to examinations with no confident predictions and 
examinations with the safety net (Extended Data Fig. 4), thus enabling the 
radiologists to allocate their time better. In a post hoc analysis assuming 
that all examinations tagged normal were not read by radiologists and 
were not forwarded to a consensus conference, we observed a 56.7% 
reduction in the reading workload. Interestingly, this resulted in a signifi-
cantly lower recall rate (−15.0% (−18.6%, −11.2%)) while still improving the 
BCDR by 16.7% (4.9%, 29.9%) (Table 5). This potential workload reduction 
is comparable to that achieved through the reader replacement strategy 
used in ScreenTrustCAD and the risk-based triage in MASAI15,16.

Our study has some limitations. PRAIM is an observational 
study with no random assignment of screening examinations to the 
AI-supported and standard-of-care groups. Thus, there was a risk that 
confounding factors influenced radiologists’ decision to use AI to 
interpret examinations, which could bias the findings. Indeed, a reader 
behavior was observed in which some radiologists preferred to read 
normal-tagged examinations with the AI-supported viewer and to inter-
pret examinations not tagged normal, including those in the safety net, 
with a standard viewer. Part of this behavior could be due to differences 
in the functionalities of the available viewers. For example, synchronized 
zoom (the ability to simultaneously enlarge all four views) is a feature 
introduced in the AI-supported viewer only during the study, whereas 
other viewers without AI support typically already have this feature. This 
reader behavior created a bias (Extended Data Fig. 6) toward a higher 
breast cancer prevalence within examinations interpreted without AI 
support. By using propensity scores with overlap weighting (Extended 
Data Fig. 3), we could overcome this bias on the BCDR as shown in a simu-
lation analysis (‘Statistical methods’ in Methods). Alternative statistical 
approaches and sensitivity analyses, including additional adjustments 
for potential confounders, different parameterizations of the reader 
set variable, placebo intervention analysis, resampling methods and 
alternative statistical approaches to correct for confounding, consist-
ently demonstrated that our findings are both unbiased and robust.

Our study has several strengths. Besides the high number of par-
ticipants and the real-world setting, likely leading to more conservative 
effects, a strength of the study is its prospective design. Retrospective 
analyses are limited by information bias as the final outcomes for 
examinations identified as suggestive of cancer only by AI are usually 
unknown. Our study overcomes this limitation as the AI predictions in 
the study group were considered by radiologists while making clinical 
decisions. Another strength of PRAIM is the extensive reporting of 
subgroup results. They showed noninferior or even statistically supe-
rior BCDRs in AI-supported screening across screening rounds, breast 
densities and ages. Thus, AI can be considered for the full screening 

population and does not need stratified use. Although not a limitation 
or a strength, it is worth noting that the data used for this study were 
collected in the early stages of AI use by radiologists (a learning phase). 
The interaction behavior between radiologists and AI, and hence the 
screening program metrics achieved, might change as radiologists 
become more familiar with using the technology.

In conclusion, our findings substantially add to the growing body 
of evidence suggesting that AI-supported mammography screening 
is feasible and safe and can reduce workload. Our study also demon-
strates that integrating AI into the screening workflow can improve 
the BCDR with a similar or even lower recall rate. The important down-
stream effects of AI-supported screening on overall program perfor-
mance metrics, including interval cancer rate and stage-at-diagnosis 
distribution at subsequent screening rounds, are subject to follow-up 
investigations. Nevertheless, based on the now available evidence on 
breast cancer detection, recall rates, PPV of biopsy and time savings, 
urgent efforts should be made to integrate AI-supported mammogra-
phy into screening guidelines and to promote the widespread adoption 
of AI in mammography screening programs.
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Methods
Ethics and data privacy
This research complies with all relevant ethical regulations. Women 
were informed about the use of AI software at each screening site, and 
their data were processed according to applicable data privacy rules, 
including the General Data Protection Regulation. The study protocol 
was registered in the German Clinical Trials Register (DRKS00027322) 
and was approved by the ethics committee of the University of Lübeck 
(22-043), which waived the need for informed consent.

Procedures
The AI models used in the study are part of a commercially available 
AI system (Vara). Different deep learning-based AI models were used 
for normal triaging and the safety net. These models were constructed 
from a combination of deep convolutional neural networks trained on 
mammography images. The labels (normal, benign, malignant) for 
these images were sourced from radiological reports, annotations of 
findings and biopsy data. The outcomes of ensuing screenings were 
used to confirm samples labeled ‘normal’. The AI system evaluates the 
suspiciousness of mammography examination findings by combining 
per-image scores of incident images and their priors (if available) in 
an aggregation model. The final score represents the model’s con-
fidence estimate of suspiciousness for a specific case. The models 
underwent two optimization processes, one aimed at high sensitivity 
(normal triaging) and the other at high specificity (safety net). Example 
examinations for AI misclassifying a cancerous case as normal as well as 
correctly catching a cancer that both radiologists missed through the 
safety net are shown in Extended Data Fig. 5. The models were trained 
and validated on a dataset comprising more than 2 million images to 
identify malignant breast tissue in mammograms. To facilitate the train-
ing of the AI models, the radiologists annotated more than 200,000 
images with polygons. The models internally output a score between 0 
and 1 for each examination, in which 0 means maximally unsuspicious 
and 1 means maximally suspicious. Thresholds were calibrated based 
on separate retrospective datasets representative of German screen-
ing18 and then applied to derive binary decisions (normal versus not 
normal, safety net versus no safety net) at an average of 60% normal 
triaging rate and 1.5% safety net trigger rate. For the remaining exami-
nations, neither the ‘normal’ tag shown nor the ‘safety net’ is active. 
All radiologists who contributed examinations to the AI group were 
trained as part of the standard medical device onboarding process 
before they started using the AI-supported viewer. The training cov-
ered the functionality of the software, including the interpretation of 
normal triage flags and safety net alerts.

During the study, the medical device being examined underwent a 
series of updates, transitioning from version 1.0.5 to 2.6.2 (a total of ten 
updates). The AI models, which form the basis of the medical device, 
were updated three times, none of them using data from the study.

Data on the procedure, outcomes, participants and detected 
cancers were retrieved from the standardized documentation of the 
official mammography screening program (linked to the data of the 
AI system) and then transferred in anonymized form to an evaluation 
database. For analysis, women with missing outcome data (666 women, 
0.1%; Fig. 1) or cancellations (610 women, 0.1%) were excluded.

Outcomes
The primary outcomes were the BCDR and recall rate. A suspicion of 
breast cancer after mammography was histopathologically confirmed 
either through preoperative biopsy or surgical biopsy. Examinations of 
women without detected breast cancer are typically completed within 
2 weeks, but the final documentation of a cancer diagnosis and treat-
ment can take several months. Therefore, follow-up time was set to a 
minimum of 200 days from the date of screening. A recall was defined 
as a woman being reinvited for further diagnostic examinations. The 
BCDR and recall rate were further stratified across screening round 

(first versus follow-up), breast density (American College of Radiology 
density levels I/II (‘nondense’) versus III/IV (‘dense’)) and age group 
(50–59 versus 60–69 years).

The secondary outcome measures were the AI predictions (normal 
or not normal, safety net) and their role in diagnosis. The safety net was 
considered ‘triggered’ when the score of the AI model exceeded the 
calibrated threshold for the safety net, ‘shown’ when the reader initially 
deemed the examination unsuspicious and was shown the warning and 
localization of the safety net in the AI-supported viewer, and ‘accepted’ 
when the radiologist consequently changed their assessment. Lastly, 
the time radiologists spent per examination was assessed in the AI 
group, stratified by AI prediction.

Change of analysis plan due to radiologist self-selection
During the data collection period, it was learned through user feedback 
sessions with radiologists and the AI vendor that the radiologists’ 
choice to use the AI-supported viewer for the final mammogram report 
sometimes depended on the initial AI prediction (normal versus not 
normal), which was already visible in the worklist (Extended Data Fig. 1). 
The AI-supported viewer also offers a sorted worklist tab where only 
‘normal’ examinations are presented one after another for expedited 
reading.

A common scenario described was that some radiologists tended 
to read all current examinations tagged as ‘normal’ in the AI-supported 
viewer, switched their software afterward and then read the remaining 
examinations in the control group without AI software. A reason for 
this behavior is that a consensus conference is more convenient when 
all participating readers used the same viewer for annotations during 
the initial reads, as this allows the annotations of all readers to be dis-
played easily during the consensus conference. In contrast, displaying 
annotations across different viewers does not work flawlessly owing 
to a lack of software interoperability. Therefore, when a screening 
examination was not flagged as normal, some readers tended to switch 
to the other viewer software to ease work with colleagues not using the 
AI-supported viewer. Additionally, the AI-supported viewer did not sup-
port some features helpful for diagnosing suspicious cases (which are 
more likely among non-normal examinations), such as synchronized 
zoom (the ability to simultaneously enlarge all four views). We call 
this observed behavior ‘reading behavior bias’. This practice was not 
anticipated in the original study setup and introduced severe selection 
bias (Extended Data Fig. 6). Data illustrating this bias are shared (Code 
availability statement).

Thus, the original analysis plan had to be adapted.

Statistical methods
A sample size of 200,000 women per study group was targeted for 
assessing the noninferiority of AI in terms of the BCDR with the origi-
nally planned analysis. Because of the reading behavior bias described 
above, which was introduced by real-world actions and not anticipated 
in the original study setup, a severe bias could be present. A simulation 
study was conducted to (1) identify a statistical method that can suc-
cessfully correct for this bias when estimating the effect of AI and (2) 
estimate the expected power for each considered statistical method. 
Only one of the considered methods—a simple regression model with 
cancer detection (yes versus no) as the outcome variable, interven-
tion (AI versus control group) as the predictor, a quasi-binomial error 
distribution, and overlap weighting using propensity scores23,24—pro-
vided unbiased results and sufficiently high power in the simulation 
study. The empirical sandwich variance for propensity score weighting 
estimators was used23,24. Propensity scores depended on the reader 
set assessing the examination and on the AI prediction (normal versus 
not normal), which were identified as a minimal adjustment set in a 
causal graph analysis (see below) and were computed using logistic 
regression. Overlap weighting was used as some propensity scores 
were rather extreme (Extended Data Fig. 3a), indicating that some 
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reader sets rarely used the AI-supported viewer, whereas some other 
reader sets usually did. The objective of overlap weighting is to place 
the highest weight on data in which the propensity for an examination 
being read with AI (AI group) and without AI (control group) is quite 
similar and place less weight on data with extreme propensity scores. 
Extended Data Fig. 3b shows that, after overlap weighting, the largest 
proportion of the weights was placed on areas of medium propensity 
scores (that is, readers who contributed reads to both the AI and control 
groups) and the distribution of the propensity to be in the AI group was 
the same in both study groups, indicating a balance in the confounders 
between the groups23,24.

For breast cancer detection, AI-supported reading was consid-
ered noninferior if the detection rate in the AI group was at most 10% 
lower than in the control group. More specifically, the lower bound of 
a two-sided 95% CI of the difference had to be above the threshold of 
−10%. If noninferiority is successfully demonstrated, sequential testing 
for superiority is justified25. Statistical superiority is demonstrated if 
the lower bound of the CI exceeds 0. For recall, AI-supported reading 
was considered noninferior if the recall rate in the AI group was at most 
10% higher than in the control group.

Model-based predictions of the BCDR (in total and by invasiveness, 
stage, grade and tumor size) and the rates of recall (including the PPV), 
consensus conference and biopsy (including the PPV) in the AI and 
control groups were derived from the regressions. Subgroup analyses 
(by screening round, breast density and age group) were conducted 
by fitting regressions, as described above, to the data restricted to 
the respective subgroup and by deriving model-based predictions 
as before.

Sensitivity analyses addressing additional and residual confound-
ing, sampling error and model decisions were performed (‘Results’). 
All analyses were conducted with R (version 4.1.3) using the packages 
PSweight (version 1.2.0)24, dagitty (version 0.3.1)26 and marginaleffects 
(version 0.18)27, as well as Python (version 3.10)28 using the package 
dowhy (version 0.11.1)29. All analyses are shared as part of the code 
(Code availability statement). Further information is also available 
upon request to the authors.

Causal graph (directed acyclic graph)
A causal effect of the intervention (use of AI, main predictor) on the end-
points (breast cancer detection, recall, consensus conference, biopsy) 
was investigated. All direct paths between all variables considered were 
evaluated for plausibility based on theory, domain knowledge and 
previous empirical evidence: breast density decreases with age30; par-
ticipation in more screening rounds increases with age; breast cancer 
risk increases with age31; breast density is associated with breast cancer 
risk32,33; breast cancer prevalence is higher among women attending 
the first screening round34; reader variability exists in the classifica-
tion of breast density categories35; AI predictions are associated with 
the presence or absence of breast cancer18; a reading behavior exists 
whereby AI predictions influence the use of AI-enabled software; radi-
ologists’ personal preferences and attitudes affect their decision to 
adopt AI36; radiologists have varied levels of expertise and competence 
in interpreting mammography examinations37; the involvement of 
a supervising radiologist introduces a third reader, affecting both 
cancer detection and recall; and there are unknown factors that may 
be associated with increased breast cancer risk.

The resulting causal graph is shown in Extended Data Fig. 2. ‘Reader 
set’ is a confounder according to the backdoor criterion38. As it is impos-
sible to adjust for the latent (unobservable) confounder ‘breast cancer 
(present or absent)’, we adjusted for a proxy (that is, the correlated 
variable ‘AI prediction’), which was also the direct cause of the observed 
reading behavior: once radiologists observed the AI prediction in the 
worklist, they reconsidered which viewer software to use for submitting 
the report39. Therefore, the main analysis model controlled for these 
two confounders: reader set and AI prediction.

The three variables ‘screening round’, ‘age at screening’ and ‘breast 
density’ are ancestors of the intervention and outcome, whereas ‘super-
vision’ is the ancestor of the outcome. Some authors recommend adjust-
ing for all ancestors of the intervention and/or outcome39. Therefore, we 
have also verified that adding the four variables just mentioned forms 
a valid adjustment set, using the R package dagitty (version 0.3.1)26. 
Results from a sensitivity analysis in which all four variables were addi-
tionally adjusted for are provided (Extended Data Table 3). Adjustment 
was done by adding the covariates to the propensity score model.

Overall, the causal graph implies the 12 (conditional) independ-
ences that should hold in the observed data. We tested this using the 
kernel-based test of statistical independence by Gretton et al.40. Indeed, 
all independence statements hold, showing that the defined causal 
graph is consistent with the observed data.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The study protocol is available at https://research.uni-luebeck.de/
en/projects/prospective-multicenter-observational-study-of-an- 
integrated-ai-s. The anonymized analysis dataset, including individual 
participant data and a data dictionary defining each field, is available 
via Dryad at https://doi.org/10.5061/dryad.zs7h44jgn (ref. 41).
Detailed information on sensitivity analyses and the simulation study 
is available from nora.eisemann@uksh.de. Requests will be answered 
within 1 month.

Code availability
The code and supporting information necessary to reproduce 
the results are available via Zenodo at https://doi.org/10.5281/
zenodo.10822135 (ref. 42). The code for training the evaluated AI system 
is part of a proprietary system and cannot be shared for commercial 
reasons. However, the AI system is available for external research evalu-
ation collaborations for researchers who provide a methodologically 
sound proposal. Proposals should be directed to stefan.bunk@vara.
ai and will be answered within 1 month.
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Extended Data Fig. 1 | AI-supported Viewer Screenshots. a) The screenshot 
shows a worklist with subset of examinations tagged as normal. Radiologists can 
also choose to read only normal examinations or only not normal examinations 
(‘potentially suspicious’). Names and dates of birth are not real and were sampled 

randomly from a list of common first and last names. b) and c) When radiologists 
assess a case as normal (BI-RADS 1 or 2) but the safety net triggered, an alert is 
shown (b) and a suspicious region is highlighted in the viewer (c), asking the 
radiologists to reconsider.
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Extended Data Fig. 2 | Causal Graph (Directed Acyclic Graph, DAG). Causal 
graph of assumed relationships between intervention, characteristics of the 
radiologists and the women screened, and the endpoint (breast cancer detection; 
recall; consensus conference; biopsy). Before being included in the DAG, possible 

direct paths between all variables considered were evaluated for plausibility 
based on theory, domain knowledge and previous empirical evidence.  
BC: Breast cancer; AI: Artificial Intelligence. Box: observed variable; round and 
dashed: latent variable.
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Extended Data Fig. 3 | Propensity Scores and Weights. a) Distribution of propensity scores (for being in AI group), stratified by being in control group or in AI group. 
b) Extent to which screening exams with a given propensity score (for being in AI group) contribute to the overall sample weight.
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Extended Data Fig. 4 | Reading Time. Reading times in the AI group for 
normal, safety net, and unconfident predictions. On average, examinations that 
were tagged as normal were read more quickly, with a median reading time of 

16 seconds, compared to unclassified examinations, which had a median reading 
time of 30 seconds, and safety net examinations, which had a median reading 
time of 99 seconds.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Example Examinations. a) This cancer was only 
diagnosed because of the safety net activation. Neither reader initially saw the 
invasive carcinoma (BI-RADS 1/2), but both changed their assessment to BI-RADS 
4 A after the safety net was displayed. The MLO view of the right breast shows an 
architectural distortion. Ultrasound during recall identified highly suspicious 
malignant findings. Histology: Invasive breast cancer, no special type, pT1b 

(9 mm) pre-therapy, pT1c (19 mm) post-op, N0, M0, G2. b) This examination was 
classified as ‘normal’ by the AI. Both readers used the AI-supported viewer and 
overruled the AI (BI-RADS 4B and BI-RADS 4 A respectively). The MLO view of the 
right breast shows a mass. Histology: Invasive breast cancer, no special type, pT1b 
(9 mm) pre-therapy, ypT1c (12 mm) post-op, N0, M0, G2.
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Extended Data Fig. 6 | Bias due to self-selection of radiologists to AI or 
control group. Excel file illustrating the effect of the reading behaviour on 
measured unadjusted breast cancer detection rate across study groups, even 
if breast cancer detection rate were identical in both study groups. The figure 
shows that even a minor adoption rate difference from 61.7% to 66.8% would 

lead to an unadjusted measured breast cancer detection rate difference of 
13.6% (bias). Therefore, it was necessary to control for this reading behavior 
in the main analysis. The Excel file is available for further analysis (10.5281/
zenodo.10822135).
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Extended Data Table 1 | Screening sites participating in PRAIM
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Extended Data Table 2 | Mammography Hardware Vendors

Model-predicted breast cancer detection and recall rates, and corresponding differences in AI and control group by hardware vendors. For 57 screening examinations, the hardware vendor 
could not be determined, and therefore those exams are left out of this analysis.
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Extended Data Table 3 | Regression with further covariate adjustment (extended propensity score model)

Model-predicted breast cancer detection rates, recall rates, biopsy rates, consensus rates and corresponding differences in AI and control group (propensity score controlling for reader set 
and AI prediction and additionally for age, screening round, breast density, and supervision).
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Extended Data Table 4 | Average Treatment Effect (ATE) via Inverse Propensity Score Weighting (IPTW) and Trimming

Number of included screening examinations and results (breast cancer detection and recall rates) for different propensity score weighting schemes (overlap weighting and IPTW with various 
trimming cut-offs).
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